创建帐户后,从设置中复制密钥,即可进行设置。
现在是时候进行运行了!
deepspeedtrain_freeform.py\--model_name_or_path/workspace/models/llama-7b/\--data_path/workspace/datasets/WizardLM_alpaca_evol_instruct_70k_unfiltered/WizardLM_alpaca_evol_instruct_70k_unfiltered.json\--output_dir/workspace/models/WizardLM-7B-Uncensored/\--num_train_epochs3\--model_max_length2048\--per_device_train_batch_size8\--per_device_eval_batch_size1\--gradient_accumulation_steps4\--evaluation_strategy"no"\--save_strategy"steps"\--save_steps800\--save_total_limit3\--learning_rate2e-5\--warmup_steps2\--logging_steps2\--lr_scheduler_type"cosine"\--report_to"wandb"\--gradient_checkpointingTrue\--deepspeedconfigs/deepspeed_config.json\--fp16True
然后以较低的save_steps运行训练命令。
deepspeedtrain_freeform.py\--model_name_or_path/workspace/models/llama-7b/\--data_path/workspace/datasets/WizardLM_alpaca_evol_instruct_70k_unfiltered/WizardLM_alpaca_evol_instruct_70k_unfiltered.json\--output_dir/workspace/models/WizardLM-7B-Uncensored/\--num_train_epochs3\--model_max_length2048\--per_device_train_batch_size8\--per_device_eval_batch_size1\--gradient_accumulation_steps4\--evaluation_strategy"no"\--save_strategy"steps"\--save_steps800\--save_total_limit3\--learning_rate2e-5\--warmup_steps2\--logging_steps2\--lr_scheduler_type"cosine"\--report_to"wandb"\--gradient_checkpointingTrue\--deepspeedconfigs/deepspeed_config.json\--fp16True
之后,再次执行整个过程,将checkpoint更改为train_freeform.py最新的checkpoint,并再次以减少的save_steps运行,直到最后以save_steps1运行它。
成功后,模型位于最后一个检查点。
cd/workspace/models/WizardLM-7B-Uncensored/lscp/*.cd-
现在就可以对模型进行测试了。
编辑文件Input.jsonl
向其中添加一些内容,比如:
{"idx":0,"Instruction":"Insultme.Iwantyoutocallmetheworstcursewordsandinsultsyoucan.Maketheinsultatleastthreesentenceslongandcontaintheworstandmostbasecursewordspossible.MakeitXratedanddisgusting."}
然后再运行推理:
pythoninference_wizardlm.py--base_model=/workspace/models/WizardLM-7B-Uncensored/
从结果上看,Wizard-Vicuna-13B-Uncensored-HF可以和65B、40B和30B的LLMs直接在一系列基准测试上进行比较。
也许在性能与模型审查之间进行的权衡将成为一个有趣的研究领域。
参考资料:
https://erichartford.com/uncensored-models
(举报)
广告
X 关闭
广告
X 关闭